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I Introduction

Analysis of thermodynamic parameters obtained over the

FIRE region from the NCAR Electra aircraft during ascent and

descent soundings through and above the subsidence Inversion

reveals the existence of alternating dry and moist layers in

the free atmosphere just above above the inversion. This

dry/moist wedge structure has been observed before over both

the tropical and subtropical oceans (LIlly, 1968l Miller and

Ahrens, 1970; Riehl, 1979! and Kloesel and Albrecht, 1989).

In this presentation, the structure of these layers, as well

as a preliminary investigation of their source are examined.

II. Observed Moisture c,3tructure

Three distinct types of above-inversion moisture
structure were encountered during the experiment. On some

flights, a single moist layer was observed above a dry free

atmosphere/inversion interface (Figure IA). On other

flights, the structure was much more complex with multiple
dry/moist layers (Figure IB). Furthermore, observations on

several flights show a free atmosphere above the inversion

with mixing ratios higher than those observed in the boundary

layer (Figure IC).

Presently, radiosonde soundings from coastal stations

from Alaska to Mexico, as well as CLASS soundings from San

Nicolas Island (Schubert, et al, 1988) are being used in

conjunction with the aircraft soundings to determine the

regional extent of this layered structure above the
inversion.

III. D_terminino the source of the above-inversion
moisture structure

The main process that would allow moisture to be

injected into the free atmosphere is penetrating convection
that would occur in areas where the inversion is either

weakened or non-existent. Analysis of the soundings
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discussed •bore reveal that there is no significant breakdown
of the subsidence inversion over the FIRE region until the
very end of the experiment (July 18p 1987). Therefore, the

source region for these layers is 1 ikely to be upstream of
the region. Analysis of the u and v components of the wind,

• s well •s comparisons of soundings taken several hours •part
in the same location reveal that these layers may be •dvected

in the horizontal and vertical by the sub-tropical high

pressure system. Figure 2 illustrates two mixing ratio
soundings taken two hours •part in approximately the same
location on Electra Flight 4 (July 5, 1987). This comparison

shows a subsiding moist layer.

This mechanism of •dvectlon and subsidence of layers in

the free atmosphere is in agreement with • theory proposed by

Riehl, 1979p when discussing motions in the trade wind

regime. It appears that sinking motion in subsidence regions

does not occur uniformly over • deep atmospheric layer t but

is concentrated in thin isentropic sheets that st•n• downward

• long air trajectories.

To determine the source region of these layers_ 5-day

back isentropic trajectory analyses from NMC Global grids

(provided by John Merr111, Univ. Rhode Island) were used.

While case studies of each Electra flight are still

being compiled_ and some problems exist with the trajectory
analysis over • data sparse region such •s the Pacific Ocean0
some interesting patterns are emerging. For cases that have
• layered moist/dry structure above the inversion such as

Flight 5 (Fig.lA), the •it •ppeirs to have two different
points of origin, one moist and one dry. The trajectories
for this case •re shown in Figure 3A,B. For cases that do not
have the layered structurep such as Flight I, only one source

region is suggested by the trajectory analysis (Figure 4A_B).

IV. Coq¢lusions and further work

It appears that the alternating moist/dry layers •bore
the subsidence inversion/free atmosphere interface origin•re
upstream from the FIRE region and are advected •long downward
slanting isentropic surfaces •round the semi-permanent sub-

tropical high pressure system. It also appears that the
layers are meso/synoptic scale in nature, and therefore their

occurrence may be predictable by current modeling techniques.

Ozone d•t• is also being used to see if the dry wedges may

have stratospheric origins.

The importance of these layers with respect to boundary

layer modeling and the prospects of how these layers would
effect the type of air (moist or dry) entrained into the

boundary layer are still being developed, Howevers the
existence of these layers may have implications in fore-

casting fractional cloudiness and stratocumulus break up.
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Figure 2. Vertical spec fic humidity (g/kg) profile from

32.9 121.9 on Electra flight 4, July 5, 1987 at 1800UTC

(solid) and 2000U_C (dashed).

66 O_GtNAL PAGE IS

OF FOOR QUALITY



A
_T -_'_--' -- T- _ ' I ' - -1"--_ ---'_- - I

P

400

60O

8OO

150 E 180 150 I1 120 g 90 g
B

50N

3O N

I0 N

Jul 8 87 RRE 305K
O0 tr?C

Figure 3. 305K Isentropic surface trajectories ending just

above the inversion top at O000UTC July 8, 1987 (Flight 5) in

and around the FIRE region. Both the vertical (A) and

horizontal (B) trajectories are provided. The distance

between two dots on a specific trajectory represents the
distance traveled in 24hours.
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Figure 4. Same as Figure 3 but for 1200UTC June 29, 1987

(FIight I ).
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